วันอาทิตย์ที่ 30 สิงหาคม พ.ศ. 2552

เลนส์นูน

อ้างอิงจากเว็บไซต์ เลนส์นูน.[ออนไลน์].เข้าถึงจาก:
http://www.maceducation.com/e-knowledge/2432209100/20.htm
เลนส์นูน
เลนส์นูน (convex lens) คือ เลนส์ที่มีลักษณะหนาตรงกลางและบางที่ขอบ ดังรูป

รูปแสดงลักษณะเลนส์นูน

รูปแสดงส่วนสำคัญและรังสีบางรังสีของเลนส์
เลนส์นูนทำหน้าที่รวมแสงขนานไปตัดกันที่จุดๆ หนึ่ง ซึ่งแนวหรือทิศทางของแสงที่เข้ามายังเลนส์สามารถเขียนแทนด้วยรังสีของแสง ถ้าแสงมาจากระยะไกลมากเรียกระยะนี้ว่า " ระยะอนันต์"เช่น แสงจากดวงอาทิตย์หรือดวงดาวต่างๆ แสงจะส่องมาเป็นรังสีขนาน เมื่อรังสีของแสงผ่านเลนส์จะมีการหักเหและไปรวมกันที่จุดๆ หนึ่งเรียกว่า "จุดโฟกัส (F)" ระยะจากจุดโฟกัสถึงกึ่งกลางเลนส์ เรียกว่า "ความยาวโฟกัส (f)" และเส้นตรงที่ลากผ่านจุดศูนย์กลางความโค้งของผิวทั้งสองของเลนส์เรียกว่า " แกนมุขสำคัญ (principal axis)"

ภาพที่เกิดจากเลนส์นูน
ภาพจากเลนส์นูนเป็นภาพที่เกิดจากรังสีหักเหไปพบกันที่จุดๆ หนึ่ง ซึ่งมีทั้งภาพจริงและภาพเสมือนขึ้นอยู่กับตำแหน่งวัตถุที่วางหน้าเลนส์ ดังรูป


รูปแสดงตัวอย่างภาพจริงและภาพเสมือนที่เกิดจากเลนส์นูน

(ก) การเกิดภาพเมื่อวัตถุอยู่ห่างเลนส์นูนระยะไกลกว่าความยาวโฟกัส

(ข) การเกิดภาพเมื่อวัตถุอยู่ห่างจากเลนส์นูนที่ระยะใกล้กว่าความยาวโฟกัส
การหาชนิดและตำแหน่งของภาพจากวิธีการคำนวณ
การหาตำแหน่งภาพที่ผ่านมาใช้วิธีเขียนแผนภาพของรังสี ยังมีอีกวิธีที่ใช้หาตำแหน่งภาพคือ วิธีคำนวณ ซึ่งสูตรที่ใช้ในการคำนวณมีดังต่อไปนี้
สูตร =
เมื่อ m คือ กำลังขยายของเลนส์
I คือ ขนาดหรือความสูงของภาพ
O คือ ขนาดหรือความสูงของวัตถุ
ในการคำนวณหาตำแหน่งและชนิดของภาพจะต้องมีการกำหนดเครื่องหมาย 1 และ 2 สำหรับปริมาณต่างๆ ในสมการดังนี้
1.s มีเครื่องหมาย + ถ้าวัตถุอยู่หน้าเลนส์ และ s มีเครื่องหมาย - ถ้าวัตถุอยู่หลังเลนส์
2. s' มีเครื่องหมาย + ถ้าวัตถุอยู่หลังเลนส์ และ s' มีเครื่องหมาย - ถ้าวัตถุอยู่หน้าเลนส์
3. f ของเลนส์นูนมีเครื่องหมาย + และ f ของเลนส์เว้ามีเครื่องหมาย -
ตัวอย่างที่ 2 วางวัตถุห่างจากเลนส์นูนเป็นระยะ 12 เซนติเมตร ถ้าเลนส์นูนมีความยาวโฟกัส 5 เซนติเมตร จะเกิดภาพชนิดใด และที่ตำแหน่งใด
ตัวอย่างที่ 3 วางวัตถุห่างจากเลนส์นูนเป็นระยะ 25 เซนติเมตร ปรากฏว่าเกิดภาพเสมือนห่างจากเลนส์ 15 เซนติเมตร เลนส์นี้เป็นเลนส์ชนิดใดและมีความยาวโฟกัสเท่าไร
วิธีทำ จากสูตร


ค่า f เป็นลบ มีค่า 37.5 เซนติเมตร เป็นเลนส์เว้า ตอบ

วันศุกร์ที่ 14 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง

คุณสมบัติของแสง
อ้างอิงจากเว็บไซต์คุณสมบัติของแสง.(ออนไลน์).เข้าถึงจาก: http://www.ee43.com/fiber/chapter2_2.html
http://edu.e-tech.ac.th/mdec/learning/EE02/unit04.html
คุณสมบัติของแสง
แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่ การเดินทางเป็นเส้นตรง (Rectilinear propagation) , การหักเห (Refraction) , การสะท้อน (Reflection) และการกระจาย (Dispersion) การเดินทางแสงเป็นเส้นตรง ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n) ขของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ 2.1

คือ ความเร็วของแสงในสุญญากาศ
คือ ความเร็วของแสงในตัวกลางนั้นๆ
รูปที่ 2.1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสงในตัวกลางนั้นๆ
การสะท้อน
การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ
» การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาวดังรูปที่ 2.2
รูปที่ 2.2 การสะท้อนแบบปกติ
» การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระดังรูปที่ 2.3 รูปที่ 2.3 การสะท้อนแบบกระจาย
โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า "มุมสะท้อนเท่ากับมุมตกกระทบ" ซึ่งแสดงให้ดูในรูปที่ 2.4
รูปที่2.4 กฎการสะท้อนของแสง

การหักเหของแสง(Refraction)
การหักเหการหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ; ) โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ
» n1 <>

รูปที่ 2.5 การหักเหของแสงกรณี n1 <>
จากรูปที่ 2.5 ระยะเวลาที่แสงใช้ในการเดินทางในช่วง BC จะเท่ากับระยะเวลาที่แสงใช้ในการเดินทางในช่วง B'C' ซึ่งสามารถเขียนเป็นสมการได้ดังสมการ เมื่อพิจารณารูปสามเหลี่ยม BCC' และ BB'C' จะได้ความสัมพันธ์ทางตรีโกณ
» n1 > n2 แสงจะหักเหออกจากเส้นปกติ
รูป 2.6 การหักเหของแสงกรณี n1 > n2
จากรูปที่ 2.6 จะเห็นว่าระยะทาง BC มีค่ามากกว่า B'C' เนื่องจากระยะทาง BC เป็นการเดินทางของแสงในตัวกลางที่มีค่าดัชนีการหักเหน้อยกว่า ดังนั้นในระยะเวลาเท่ากันแสงจะสามารถเดินทางได้มากกว่า »
การสะท้อนกลับหมด (Total Internal Reflection)
การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ ซึ่งจะส่งผลให้ มีค่าเท่ากับ หรือมากกว่าโดยเราสามารถหาค่า ได้จาก Snell's Law เมื่อ จะเกิดการสะท้อนกลับหมดของแสงซึ่งจะได้ ดังนั้น ดังนั้นจะได้
รูปที่ 2.7 การสะท้อนกลับหมดของแสง
ในรูปที่ 2.8 แสดงตัวอย่างของการสะท้อนกลับหมดของแสง โดยการมองเครื่องบินที่อยู่ในอากาศจากใต้น้ำ ซึ่งจะสามารถมองเห็นเครื่องบินได้ก็ต่อเมื่อเรามองทำมุมกับผิวน้ำมากกว่า ค่าดังกล่าวได้มาจากการคำนวณมุมวิกฤตดังนี้ รูปที่ 2.8 ตัวอย่างการสะท้อนกลับหมดของแสง
จากสมการ แทนค่า n2=1 และ n1=1.33 จะได้ ดังนั้นการมองจะต้องทำมุมกับเส้นปกติน้อยกว่า จึงจะสามารถมองเห็นเครื่องบินได้ ถ้าเรามองทำมุมกับเส้นปกติเท่ากับหรือมากกว่า จะทำให้เกิดการสะท้อนกลับหมดของแสงจึงไม่สามารถมองเห็นเครื่องบินได้ ซึ่งปรากฏการณ์การสะท้อนกลับหมดของแสงนี้จะทำให้แสงสามารถเดินทางไปในเส้นใยแสงได้การกระจายในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"

รูปที่ 2.9 การกระจายของแสงสีขาว
การกระจายของแสงนี้จะตั้งอยู่บนความจริงที่ว่า "แสงที่มีความยาวคลื่นต่างกันจะเดินทางด้วยความเร็วที่ต่างกันในตัวกลางเดียวกัน" นอกจากคุณสมบัติดังกล่าวทั้ง 4 ข้อแล้ว แสงยังมีคุณสมบัติอื่นๆ อีกคือ1. แสงจัดเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic wave) ชนิดหนึ่ง2. คลื่นแสงเป็นคลื่นมี่มีการเปลี่ยนแปลงตามขวาง (Transverse wave) ซึ่งทั้ง 2 กรณีนี้ ทำให้เราสามารถสรุปได้ว่าคลื่นแสงเป็นคลื่น TEM โดยลักษณะการเดินทางของแสงแสดงในรูปที่ 2.10
รูปที่ 2.10 การเดินทางของคลื่นแสง
รุ้งกินน้ำ
เป็นการกระจายของแสง เกิดจากแสงขาวหักเหผ่านผิวของละองน้ำ ทำให้แสงสีต่าง ๆ กระจายออกจากกันแล้วเกิดการสะท้อนกลับหมดที่ผิวด้านหลังของละอองน้ำแล้วหักเหออกสู่อากาศ ทำให้แสงขาวกระจายออกเป็นแสงสีต่าง ๆ กัน แสงจะกระจายตัวออกเมื่อกระทบถูกผิวของตัวกลาง เราใช้ประโยชน์จากการกระจายตัวของลำแสง เมื่อกระทบตัวกลางนี้ เช่น ใช้แผ่นพลาสติกใสปิดดวงโคม เพื่อลดความจ้าจากหลอดไฟหรือ โคมไฟชนิดปิดแบบต่าง ๆ
การทะลุผ่าน (Transmission)
การทะลุผ่าน หมายถึงการที่แสงพุ่งชนตัวกลางแล้วทะลุผ่านมันออกไปอีกด้านหนึ่ง โดยที่ความถี่ไม่เปลี่ยนแปลงวัตถุที่มีคุณสมบัติการทะลุผ่านได้ เช่น กระจก ผลึกคริสตัล พลาสติกใส น้ำและของเหลวต่าง ๆ
การดูดกลืน (Absorbtion)
การดูดกลืน หมายถึง การที่แสงถูกดูดกลืนหายเข้าไปในตัวกลางโดยทั่วไปเมื่อมีพลังงานแสงถูกดูดกลืนหายเข้าไปในวัตถุใด ๆเช่น เตาอบพลังงานแสงอาทิตย์ เครื่องต้มน้ำพลังงานแสง และยังนำคุณสมบัติของการดูดกลืนแสงมาใช้ในชีวิตประจำวัน เช่น การเลือกสวมใส่เสื้อผ้าสีขาวจะดูดแสงน้อยกว่าสีดำ จะเห็นได้ว่าเวลาใส่เสื้อผ้าสีดำ อยู่กลางแดดจะทำให้ร้อนมากกว่าสีขาว
การแทรกสอด (Interference)
การแทรกสอด หมายถึง การที่แนวแสงจำนวน 2 เส้นรวมตัวกันในทิศทางเดียวกัน หรือหักล้างกัน หากเป็นการรวมกัน ของแสงที่มีทิศทางเดียวกัน ก็จะทำให้แสงมีความสว่างมากขึ้น แต่ในทางตรงกันข้ามถ้าหักล้างกัน แสงก็จะสว่างน้อยลด การใช้ประโยชน์จากการสอดแทรกของแสง เช่น กล้องถ่ายรูปเครื่องฉายภาพต่าง ๆ และการลดแสงจากการสะท้อน ส่วนในงานการส่องสว่าง จะใช้ในการสะท้อนจากแผ่นสะท้อนแสง
สรุป
คุณสมบัติต่าง ๆ ของแสงแต่ละคุณสมบัตินั้น เราสามารถนำหลักการมาใช้ประโยชน์ได้หลายอย่าง เช่น คุณสมบัติของการสะท้อนแสงของวัตถุ เรานำมาใช้ในการออกแบบแผ่นสะท้อนแสงของโคมไฟ การหักเหของแสงนำ มาออกแบบแผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจก หรือพลาสติกเพื่อบังคับทิศทางของแสงไฟ ที่ออกจากโคมไปในทิศที่ต้องการ การกระจายตัวของลำแสงเมื่อกระทบตัวกลางเรานำมาใช้ประโยชน์ เช่นใช้แผ่นพลาสติกใสปิดดวงโคมเพื่อลดความจ้าจากหลอดไฟ ต่าง ๆ การดูดกลืนแสง เรานำมาทำ เตาอบพลังงานแสงอาทิตย์เครื่องต้มพลังงานแสง และการแทรกสอดของแสง นำมาใช้ประโยชน์ในกล้องถ่ายรูป เครื่องฉายภาพต่าง ๆ จะเห็นว่าคุณสมบัติแสงดังกล่าวก็ได้นำมาใช้ในชีวิตประจำวันของมนุษย์เราทั้งนั้น

วันพฤหัสบดีที่ 6 สิงหาคม พ.ศ. 2552

กล้องจุลทรรศน์

รูปการเขียนอ้างอิงจากเว็บไซต์
กล้องจุลทรรศน์. ( ออนไลน์ ). เข้าถึงจาก :
http://www.mtbk.ac.th/v.2009/technique%20of%20work/pornpimon/component.html http://www.rmutphysics.com/PHYSICS/oldfront/62/light1/ligh_29.htm
ส่วนประกอบของกล้องจุลทรรศน์.(ออนไลน์). เข้าถึงจาก :
http://www.212cafe.com/boardvip/user_board/siamindu/picture/16269_2.gif
ชนิดของกล้องจุลทรรศน์.(ออนไลน์). เข้าถึงจาก :
http://www.mtbk.ac.th/v.2009/technique%20of%20work/pornpimon/kindofmicroscope.html
หลักการทำงานและวิธีการใช้งานกล้องจุลทรรศน์.(ออนไลน์).เข้าถึงจาก :
http://www.princess-it.org/kp9/hrh-projects/file/20060327_sammakkee/Aee/Lunla/index.htm

กล้องจุลทรรศน์ (Microscope)

กล้องจุลทรรศน์เป็นอุปกรณ์ที่ช่วยให้เรามองเห็นวัตถุที่มีขนาดเล็กมาก ประกอบด้วยเลนส์นูนความยาวโฟกัสสั้น ๆ 2 อัน โดยเลนส์อันหนึ่งอยู่ใกล้วัตถุเรียกว่าเลนส์ใกล้วัตถุ (Objective Lens) และเลนส์อันหนึ่งอยู่ใกล้ตาเรียกว่าเลนส์ใกล้ตา(Eyepiece Lens) โดยความยาวโฟกัสของเลนส์ใกล้วัตถุน้อยกว่าความยาวโฟกัสของเลนส์ใกล้ตามาก



วางวัตถุไว้ในระหว่าง ของเลนส์ใกล้วัตถุ จะได้ภาพจริงขนาดขยายอยู่หน้าเลนส์ใกล้ตาโดยจะเป็นวัตถุเสมือนของเลนส์ใกล้ตา โดยวัตถุเสมือนนี้ จะต้องอยู่ระหว่างความยาวโฟกัสของเลนส์ใกล้วัตถุกับเลนส์ เกิดภาพเสมือนขนาดขยายที่ระยะที่เห็นชัดปกติของตา คือประมาณ 25 เซนติเมตร โดยในทาง ปฏิบัติวิธีทำให้เห็นภาพชัดเรียกว่าการโฟกัสภาพทำได้โดยเลื่อนเลนส์ใกล้ตาเพื่อปรับระยะวัตถุให้เหมาะสมที่จะเกิดภาพที่ระยะเห็นได้ชัดเจน
รูปที่ 24 แสดงทางเดินแสงของกล้องจุลทรรศน์

ความยาวของตัวกล้องจุลทรรศน์ (Length 0f Microscope , L) คือระยะระหว่างเลนส์วัตถุถึงเป็น
L = (20) โดยที่ แทนระยะภาพของเลนส์ใกล้วัตถุ
แทนระยะวัตถุของเลนส์ใกล้ตา

กำลังขยายของกล้องจะมีค่าขึ้นกับผลคูณของกำลังขยายของเลนส์ใกล้ตากับเลนส์ใกล้วัตถุ

ส่วนประกอบของกล้องจุลทรรศน์
1) ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ ทำหน้าที่รับน้ำหนักทั้งหมดของกล้องจุลทรรศน์ มีรูปร่างสี่เหลี่ยม หรือวงกลม ที่ฐานจะมีปุ่มสำหรับปิดเปิดไฟฟ้า
2) แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน ใช้เป็นที่จับเวลาเคลื่อนย้ายกล้องจุลทรรศน์
3) ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่าง ๆ ติดอยู่กับจานหมุนที่เรียกว่า Revolving Nosepiece
4) ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน
5) ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น
6) เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ
7) เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ
8) เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา
9) กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุโดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า
10)ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ
11)แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา
12)ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกยิ่งขึ้น
13) แท่นวางวัตถุ (Stage) เป็นแท่นสำหรับวางสไลด์ตัวอย่างที่ต้องการศึกษา มีลักษณะเป็นแท่นสี่เหลี่ยม หรือวงกลมตรงกลางมีรูให้แสงจากหลอดไฟส่องผ่านวัตถุแท่นนี้สามารถเลื่อนขึ้นลงได้ด้านในของแท่นวางวัตถุจะมีคริปสำหรับยึดสไลด์และมีอุปกรณ์ช่วยในการเลื่อนสไลด์ เรียกว่า Mechanical Stage นอกจากนี้ยังมีสเกลบอกตำแหน่งของสไลด์บนแทนวางวัตถุ ทำให้สามารถบอกตำแหน่งของภาพบนสไลด์ได้





สไลด์ (Slide) สไลด์ทั่วไปมีขนาด 7.5 cm X 2.5cm. หนาประมาณ 1-2 mm.สไลด์ทำด้วยแก้วเพื่อที่เราจะสามารถใช้แสงจากทั้งด้านล่างและด้านบนในการศึกษาได้อย่างสะดวก




ชนิดของกล้องจุลทรรศน์
1. กล้องจุลทรรศน์ใช้แสง (Light Microscope)
ในปัจจุบันกล้องจุลทรรศน์ใช้แสงได้รับการพัฒนาให้มีประสิทธิภาพดียิ่งขึ้นกว่าในอดีต กล้องจุลทรรศน์ใช้แสงที่ดีในปัจจุบัน มีกำลังขยายประมาณ 2,000 เท่า เป็นกล้องจุลทรรศน์ใช้แสงแบบเชิงประกอบในที่นี้จะกล่าวถึงกล้องจุลทรรศน์ใช้แสงเพียง 2 ชนิด คือ 1.1 กล้องจุลทรรศน์ใช้แสงแบบเชิงประกอบ (compound light microscope) เป็นกล้องจุลทรรศน์ชนิดที่ใช้เลนส์หลายอันและมีกำลังขยายต่างๆ กันจะเห็นภาพวัตถุได้โดยมีการสะท้อนแสงจากวัตถุเข้าสู่เลนส์ ประกอบด้วย เลนส์ 2 ชุด คือ เลนส์ใกล้วัตถุ (objective lens) และเลนส์ใกล้ตา (ocular lens หรือ eyepiece) กำลังขยายของภาพคือ ผลคูณของกำลังขยายของเลนส์ใกล้วัตถุกับกำลังขยายของเลนส์ใกล้ตา ความสามารถในการแจกแจงรายละเอียดของภาพของกล้องจุลทรรศน์ขึ้นอยู่กับคุณสมบัติของเลนส์ และแสงต้นกำเนิด



2. กล้องจุลทรรศน์อิเล็กตรอน (Electron Microscope )
กล้องจุลทรรศน์อิเล็กตรอนเป็นกล้องจุลทรรศน์ที่มีกำลังขยายสูงมาก เพราะใช้ลำแสงอิเล็กตรอนแทนแสงปกติ และใช้สนามแม่เหล็กไฟฟ้าแทนเลนส์แก้ว เป็นกล้องที่ใช้ศึกษาโครงสร้างและส่วนประกอบของเซลล์ได้อย่างละเอียด แบ่งออกเป็น 2 ประเภท 2.1 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (transmission electron microscope หรือ TEM) กล้องจุลทรรศน์ชนิดนี้มีราคาแพงมาก และการใช้งานจะซับซ้อนมากกว่ากล้องจุลทรรศน์ที่กล่าวมาข้างต้น โดยใช้อิเล็กตรอนเป็นแหล่งกำเนิดแสงและให้ผ่านตัวอย่างที่มีขนาดบางมากๆ ใช้แผ่นแม่เหล็กแทนเลนส์แก้ว สามารถขยายภาพได้ 200,000 ? ถึง 500,000 ? เป็นภาพ 2 มิติ (two dimensional image) สามารถดูรายละเอียดภายในได้เช่นเดียวกับกล้องจุลทรรศน์ใช้แสงแบบเชิงประกอบ





ภาพที่ 8 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน ( transmission electron microsope)
2.2 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning electron microscope หรือ SEM) กล้องจุลทรรศน์ชนิดนี้ลำแสงอิเล็กตรอนจะตกกระทบเฉพาะผิวด้านนอกของวัตถุ ภาพที่เห็นจะเห็นได้เฉพาะผิวนอก เป็น 3 มิติ กล้องชนิดนี้แม้วาจะมีความสามารถในการเห็นภาพต่ำกว่า กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านและสามารถเห็นเฉพาะผิวนอกของวัตถุก็ตามแต่ภาพที่เห็นจะได้รายละเอียดมากกว่าและชัดเจน ซึ่งเป็นประโยชน์อย่างยิ่งสำหรับนักชีววิทยาที่จะศึกษาโครงสร้างของสิ่งมีชีวิตได้ดียิ่งขึ้น
ภาพภาพกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope)



หลักการการทำงานของกล้องจุลทรรศน์
กล้องจุลทรรศน์เป็นเครื่องมือที่ช่วยในการมองวัตถุที่มีขนาดเล็ก ซึ่งเป็นเครื่องช่วยตาในการศึกษาลักษณะโครงสร้างของเซลล์ให้ละเอียดยิ่งขึ้น ซึ่งกล้องจุลทรรศน์มีความสามารถขยาย (magnification) ได้มากหรือน้อยขึ้นอยู่กับความสามารถในการแจกแจงรายละเอียด (Resolution / Resolving power) หมายถึงความสามารถของกล้องจุลทรรศน์ในการแยกจุดสองจุด ซึ่งอยู่ใกล้กันที่สุดให้มองเห็น แยกเป็นสองจุดได้ (Two points of discrimination) ทั้งนี้ขึ้นอยู่กับ- ความยาวคลื่นแสงที่ส่องผ่านเลนส์ ซึ่งถ้าแสงมีความยาวคลื่นที่สั้น จะช่วยเพิ่ม resolving power - ความสามารถในการรวมแสงของเลนส์วัตถุ (numerical aperture of objective lens / NA) โดยที่ค่า NA ยิ่งมากภาพที่ได้ก็จะยิ่งคมชัดมากขึ้นตาม
การใช้กล้องจุลทรรศน์
1. การจับกล้อง ใช้มือหนึ่งจับที่แขนของกล้อง และใช้อีกมือหนึ่งรองรับที่ฐาน
2. ตั้งลำกล้องให้ตรงเสมอเพื่อป้องกันไม่ให้ส่วนประกอบต่างๆเลื่อนหลุดจากตำแหน่ง
3. หมุนเลนส์ใกล้วัตถุให้เป็นเลนส์ที่มีกำลังขยายต่ำสุดให้อยู่ในตำแหน่งแนวของลำกล้อง
4. ปรับกระจกเงา หรือเปิดไฟเพื่อให้แสงเข้าลำกล้องได้เต็มที่
5. นำแผ่นสไลด์ที่จะศึกษาวางบนแท่นวางวัตถุ ให้วัตถุอยู่บริเวณกึ่งกลางบริเวณที่แสงผ่าน
6. มองด้านข้างตามแนวระดับแท่นวางวัตถุ ค่อยๆหมุนปุ่มประปรับภาพหยาบให้เลนส์ใกล้วัตถุเลื่อนลงมาอยู่ใกล้ๆกระจกปิดสไลด์ (แต่ต้องระวังไม่ให้เลนส์กับสไลด์สัมผัสกัน เพราะจะทำให้ทั้งคู่แตกหักหรือเสียหายได้)
7. มองที่เลนส์ใกล้ตาค่อยๆปรับปุ่มปรับภาพหยาบให้กล้องเลื่อนขึ้นช้าๆ เพื่อหาระยะภาพ เมื่อได้ภาพแล้วให้หยุดหมุน ตรวจดูแสงว่ามากหรือน้อยเกินไปหรือไม่ ให้ปรับไดอะแฟรมเพื่อให้ได้แสงที่พอเหมาะ
8. มองที่เลนส์ใกล้ตาหมุนปุ่มปรับภาพละเอียดเพื่อให้ได้ภาพที่ชัดเจนยิ่งขึ้น ถ้าวัตถุที่ศึกษาไม่อยู่ตรงกลางให้เลื่อนแผ่นสไลด์เล็กน้อยจนเห็นวัตถุอยู่ตรงกลางพอดี
9. ถ้าต้องการให้ภาพขยายใหญ่ขึ้นก็หมุนเลนส์อันที่กำลังขยายสูงขึ้นเข้าสู่แนวลำกล้อง แล้วปรับความคมชัดด้วยปุ่มปรับภาพละเอียดเท่านั้น
10. บันทึกกำลังขยายโดยหาได้จากผลคูณดังที่กล่าวไว้แล้ว
11. หลังจากใช้กล้องจุลทรรศน์แล้ว ให้ปรับกระจกเงาให้อยู่ในแนวดิ่ง ตั้งฉากกับตัวกล้อง เลื่อนที่หนีบสไลด์ให้ตั้งฉากกับที่วางวัตถุ หมุนเลนส์ใกล้วัตถุให้เป็นอันที่มีกำลังขยายต่ำสุดอยู่ในตำแหน่งของลำกล้อง และเลื่อนลำกล้องให้อยู่ในตำแหน่งต่ำสุด เช็ดทำความสะอาดส่วนที่เป็นโลหะด้วยผ้านุ่มๆและสะอาด แล้วจึงนำกล้องเข้าเก็บในตำแหน่งที่เก็บกล้อง